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a b s t r a c t

We develop a fully implicit scheme for the Navier–Stokes equations, in conservative form,
for low to intermediate Mach number flows. Simulations in this range of flow regime pro-
duce stiff wave systems in which slow dynamical (advective) modes coexist with fast
acoustic modes. Viscous and thermal diffusion effects in refined boundary layers can also
produce stiffness. Implicit schemes allow one to step over the fast wave phenomena (or
unresolved viscous time scales), while resolving advective time scales. In this study we
employ the Jacobian-free Newton–Krylov (JFNK) method and develop a new physics-based
preconditioner. To aid in overcoming numerical stiffness caused by the disparity between
acoustic and advective modes, the governing equations are transformed into the primitive-
variable form in a preconditioning step. The physics-based preconditioning incorporates
traditional semi-implicit and physics-based splitting approaches without a loss of consis-
tency between the original and preconditioned systems. The resulting algorithm is capable
of solving low-speed natural circulation problems ðM � 10�4Þ with significant heat flux as
well as intermediate speed ðM � 1Þ flows efficiently by following dynamical (advective)
time scales of the problem.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

There is an increasing interest in developing next generation high-fidelity simulation tools for analysis of nuclear reactor
systems. These tools should enhance the predictive capability and will be used for design, optimization and safety assess-
ments of future advanced nuclear reactors. Operating conditions for new reactor concepts can differ significantly from
the conventional Light Water Reactors (LWR). For example, high temperature gas-cooled reactors (HTGR) are expected to
operate at higher thermal loadings (e.g. a temperature difference of the coolant between inlet and outlet can be as high
as �400 K). Under high-heat flux conditions, density variations of the coolant may become significant even though the flow
is relatively low-speed. Under these large entropy changing conditions, incompressible flow simulations with the first-order
Boussinesq approximation for buoyancy may cease to be adequate. A deficiency of the incompressible/Boussinesq approx-
imation was demonstrated by the work of Darbandi and Hosseinizadeh [6], where greater than 10% difference in the local
Nusselt number has been observed. Therefore, development of more appropriate numerical methods based on the conser-
vative (compressible) form of the Navier–Stokes equations may be necessary to avoid significant modeling errors.

Another motivation for using the conservative form of the Navier–Stokes equations is the ability to model a wide range of
flow conditions. For example, two flow regimes are important during hypothetical HTGR accidents: the loss of the forced
cooling accident (LOFC) with and without depressurization [30]. The LOFC without depressurization occurs when a coolant
pump fails, leading to a natural convection scenario (passive cooling). In this regime, the flow is driven by the buoyancy
forces due to density variations. On the other hand, the LOFC with depressurization occurs when a coolant pipe breaks,
. All rights reserved.
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causing choked flow at the break due to the large pressure difference. In order to analyze both of these accident scenarios
within one framework, an efficient flow algorithm which is valid in the range of very low-Mach number to Mach number
approximately unity is required.

One of the challenges in developing algorithms in this flow regime is a numerical stiffness under low-Mach number con-
ditions. With the conservative form of the Navier–Stokes equations, we take into consideration the thermodynamic pressure
through an equation of state. This accounts for acoustic modes (as opposed to filtering them out, in the incompressible for-
mulation) and, therefore, introduces a significant time scale separation between fast (acoustic) and slow dynamic (convec-
tive) modes. Moreover, time scales of heat conduction and viscous dissipations may be also stiff, especially when one
attempts to resolve boundary layers or introduces eddy-diffusivity based turbulence closures.

Several numerical algorithms have been proposed for solving low-Mach number flows. One of the most often used is the
‘‘low-Mach number asymptotic” expansion [22,15]. It extends compressible flow algorithms to low-Mach number flows by
expanding the flow variables in terms of the Mach number, and rewriting the pressure in terms of spatially constant ther-
modynamic pressure and spatially-varying local hydrodynamic pressure. For example, a recent work by Liou [19] extends
the AUSM+-up scheme to all-speed flows using the low-Mach number asymptotes. Another example is the implicit (stabi-
lized) finite element method developed by Liu and Makhviladze [20]. The large heat release can be treated by these asymp-
totic expansions because they do not assume solenoidal velocity field r �~u ¼ 0. However, the solution may become
inaccurate at intermediate Mach numbers due to the expansion. Therefore, the low-Mach number asymptotic expansion
method is often used in low-speed combustion problems.

Semi-implicit methods are another widely used class of all-speed solvers. For example, the Semi-Implicit Method for
Pressure Linked Equation (SIMPLE) [25] and low-Mach number projection algorithms [5] solve a velocity–pressure coupling
implicitly by efficient iterative schemes. Another example is the Implicit Continuous Eulerian (ICE) method [13], which treats
the pressure term in the momentum equation implicitly, eliminating time step restrictions due to fast acoustic modes. The
original ICE scheme has been developed primarily for isentropic flows. Thus, it is not well suited for flows with high-heat
fluxes. Several non-isentropic improvements have been introduced, including a recently proposed PCICE algorithm [1,21]
which minimizes this restriction by incorporating viscous dissipations and heat conduction in a predictor–corrector fashion.
However, the semi-implicit nature of the PCICE algorithm can produce additional time integration errors which may become
significant at a large CFL number.

Many researchers have attempted to expand the compressible flow framework into an incompressible limit by using
‘‘time derivative preconditioning” [3,33,34]. The preconditioned system changes the acoustic speed close to the advection
speed. However, similar to artificial compressibility methods [4], it is difficult to achieve time-accurate solutions efficiently;
therefore, it is mostly used for steady state computations.

The current approach differs in the following way. First, we solve the conservative form of the Navier–Stokes equations
implicitly without any simplifications. Because our discretization does not assume low-Mach number flows, we can solve
intermediate Mach number flows without loss of accuracy. The resulting nonlinear system is solved efficiently by the Jaco-
bian-free Newton–Krylov (JFNK) method with physics-based preconditioning (PBP) [16,17,28]. The PBP is employed to accel-
erate the convergence of the Krylov-based iterative method. In the PBP, the basic ideas of above-mentioned classical semi-
implicit, and/or operator-split methods are utilized. The numerical stiffness due to the disparity of the time scales is reme-
died by identifying and isolating the distinct physical phenomena (i.e. acoustic waves, heat conduction, and viscosity), then
preconditioning each physics implicitly.

The current work is closely related to two previous efforts. One of these efforts used the JFNK–PBP approach for applica-
tion to compressible multiphase flow for hurricane simulation [29,28]. The other effort used the JFNK–PBP approach for
application to incompressible flow plus phase-change for melting–freezing applications [10,11]. In both cases, using the
semi-implicit method and operator splitting as a preconditioner was shown to provide significant benefit to using the
semi-implicit method alone as the solver. In this work we extend the definition of the preconditioning concept to a conser-
vative formulation of the Navier–Stokes equations and establish the algorithm performance on a more generic problem.

The key feature of JFNK is combining Newton’s method to solve implicit nonlinear systems with Krylov subspace iterative
methods. Krylov methods do not require an explicit form of the Jacobian, which eliminates the computationally expensive
step of forming analytical Jacobian matrices required by Newton’s method. The required matrix–vector product can be
approximated by the numerical differentiation of nonlinear residual functions; therefore, JFNK readily integrates the differ-
ent physics into one solver framework.

In this study we demonstrate how to efficiently solve the conservative (compressible) form of the Navier–Stokes equa-
tions in a wide range of Mach numbers (from 10�4 to 1) with second-order spatiotemporal discretization. There are two
key ideas beyond JFNK that allow for this. First, we transform the original conservative-variable system into the primi-
tive-variable formulation at the preconditioning stage. This transformation enables separation of different physical phenom-
ena, and allows one to utilize traditional operator-split and semi-implicit algorithms as an effective (physics-based)
preconditioner. Second, we have developed a compact form of discrete pressure equation. For this, we employ the Rhie–
Chow based interpolation [27,31] to compute fluxing velocities at cell edges. The consistent discretization between the ori-
ginal and the preconditioned systems, together with compact stencils, maximizes the efficiency of the algorithm.

The reminder of this paper is organized as follows. Section 2 introduces the governing equations and the JFNK framework.
The spatiotemporal discretization of the governing equation is described in Section 3. We focus here on the Rhie–Chow
based interpolation of the advection operator. In Section 4, we describe our physics-based preconditioner for all-speed flows
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in detail. Efficiency and accuracy of the developed algorithm is demonstrated in Section 5 using two examples of widely
varying Mach number. Finally, in Section 6 we conclude this work and outline several future directions.

2. Overview of the solution strategy

2.1. Governing equations

The governing hydrodynamic equations, in the conservative form, are
Conservation of mass
@q
@t
þr � q~u ¼ 0
The Navier–Stokes equations
@q~u
@t
þr � ðq~u�~uÞ þ rP �r � s� q~g ¼ 0 ð1Þ
Conservation of total energy
@E
@t
þr � ð~uðEþ PÞÞ � r � ðs �~uÞ � r �~q� q~g �~u ¼ 0;
where q; q~u; E are the density, momentum, and total energy of the fluid, P; s; ~g, and ~q ¼ jrT are the pressure, viscous
stress tensor, gravity vector, and heat flux, j and T are the thermal conductivity and temperature, respectively. For a New-
tonian fluid with the Stokes hypothesis, the viscous stress tensor components are defined as
s ¼
sxx sxy

syx syy

� �
¼

2
3 l 2 @u

@x � @v
@y

� �
l @u

@y þ @v
@x

� �
l @u

@y þ @v
@x

� �
2
3 l 2 @v

@y � @u
@x

� �
264

375: ð2Þ
Eq. (1) must be closed with an equation of state. Here, we use the ideal gas law,
P ¼ qeðc� 1Þ; ð3Þ
where e ¼ cvT and c are the internal energy and the ratio of specific heats, respectively and cv is the specific heat at constant
volume. Eq. (1) can be written in vector form,
@U
@t
þ RðUÞ ¼ 0; ð4Þ
where U ¼ fq;qu;qv ; EgT is the vector of conservative variables and R is the spatial discrete operators.

2.2. Time discretization

Due to the existence of multiple time scales in low-Mach number flows, we would like to solve Eq. (1) implicitly. An im-
plicit time integration allows one to choose the time step solely based on accuracy, not stability. In the present study, we
employ two implicit time discretization schemes, the first-order Backward Euler (BE1),
Unþ1 � Un

Dt
þ RðUnþ1Þ ¼ 0; ð5Þ
and the second-order Backward Differencing (BDF2),
3
2 Unþ1 � 2Un þ 1

2 Un�1

Dt
þ RðUnþ1Þ ¼ 0: ð6Þ
2.3. Jacobian-free Newton–Krylov method

The Newton–Krylov method is a synergistic combination of the quadratically convergent Newton method and a Krylov
subspace iterative method [16]. Newton’s method iteratively solves the nonlinear equations of the following form,
ResðUÞ ¼ 0; ð7Þ
where ResðUÞ is the nonlinear residual function. For example, the nonlinear residual function with BE1 can be expressed
as
ResðU�Þ ¼ U� � Un

Dt
þ RðU�Þ; ð8Þ
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where U� represents an intermediate solution vector prior to declaration of Newton convergence. At each step of a Newton
iteration, the following linear system of equations is solved
JkdUk ¼ �ResðUkÞ; ð9Þ
where Jk � @ResðUkÞ
@Uk is the Jacobian matrix of the kth Newton step. Eq. (9) is solved using a Krylov method (e.g. GMRES [32])

and the solution is updated as
Ukþ1 ¼ Uk þ dUk: ð10Þ
JFNK makes use of the fact that Krylov methods involve only a matrix–vector product, hence do not require the explicit form
of the Jacobian matrix. The matrix–vector product can then be approximated by the finite difference version of the direc-
tional derivative [2] as
Jv � ResðUþ �vÞ � ResðUÞ
�

; ð11Þ
where � is a small perturbation parameter and v is a Krylov vector. There are several options for choosing � [16]. In this
study, we use the following simple equation suggested in [26] to choose �,
� ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kUk2

p
kvk2

; ð12Þ
where b is a small constant related to the square root of machine round-off. Because the matrix–vector product can be
approximated by Eq. (11), the nonlinear residual function evaluation is the only necessary component for solving the dis-
crete system equation (9). In practical applications, Eq. (9) is not solved exactly, but in an approximate manner (i.e. inexact
Newton method [9]). At each (inexact) Newton step, we solve Eq. (9) with the following convergence criteria
kJkdUk þ ResðUkÞk2 < gkResðUkÞk2: ð13Þ
The parameter g, is the forcing term. In this study g is set to a constant value of 10�2. For each time (or pseudotime) step, the
nonlinear residual is reduced to 10�6. By choosing the ‘‘inexact” Newton iteration method and a constant forcing term, we
sacrifice the quadratic convergence rate of a full Newton method. However, the overall computational effort can be reduced
because the effort required to solve the linear system becomes smaller.

2.4. Physics-based preconditioner for Navier–Stokes equations

Although the nonlinear system may be solved only with the nonlinear residual evaluation (and a Krylov method), the suc-
cess of the JFNK method heavily depends upon an efficiency of the GMRES. Preconditioning is commonly employed to im-
prove the convergence of the GMRES. The right-preconditioned system can be expressed as
JkM�1ðMdUkÞ ¼ �ResðUkÞ; ð14Þ
where M is the preconditioning matrix or the corresponding operations. When solving Eq. (14), the matrix–vector product
required on each GMRES iteration can be approximated by
JM�1v � ResðUþ �M�1vÞ � ResðUÞ
�

; ð15Þ
where v is a Krylov vector [32]. Physics-based preconditioning (PBP) [16] has been developed with multiphysics problems in
mind. A classical operator splitting and semi-implicit algorithm can be utilized as a PBP because a PBP can be viewed as the
equivalent procedure to approximating the new time step solution by simpler (and computationally inexpensive) methods.
An intelligent choice of a PBP can substantially reduce the number of Krylov iterations, which consequently reduces both the
memory requirements and computational effort.

To solve low to intermediate Mach number flow problems with high-heat fluxes, we are interested in the ability to
implicitly step over three physical time scales: (a) stiff acoustic waves in low-speed regimes, (b) viscous diffusion, and (c)
thermal diffusion in finely gridded boundary layers. The goal of the preconditioning step is to solve these physics implicitly
and efficiently by extracting the contribution of these three physics from the original set of equations. These physics are best
represented by the primitive variables. Thus, the first step of preconditioning is to transform the conservative variables ðUÞ
into primitive variables ðVÞ via the following similarity transformation
A�1
JkAdVk ¼ �A�1ResðUkÞ; ð16Þ

~JdVk ¼ �gResðVkÞ; ð17Þ
where V ¼ fP;u;v ; egT represents a vector of the primitive variables, while ~J ¼ A�1
JA and gResðVÞ ¼ A�1ResðUÞ are the Jaco-

bian matrix and the residual in the primitive variables, respectively. A ¼ @U
@V is the transformation matrix from the conserva-

tive to non-conservative variables [14] and the matrix entities can be evaluated from the constitutive relations (e.g. equation
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of state). This choice of the primitive variables allows us to produce simple elliptic/parabolic systems that target stiff wave,
heat conduction, and viscosity.

The transformed Jacobian matrix is simplified by ignoring slow physics, such as advection. The preconditioning matrix is
then reduced to a block lower triangular form, with each diagonal block matrix representing a scalar parabolic equation.
With the help of the Rhie–Chow interpolation for advection operators, the scalar parabolic systems are readily formed
and approximately inverted sequentially with a fixed number of multigrid V-cycles. The approximated correction terms
are then transformed back to the conservative variables to complete a preconditioning step. As a result of this precondition-
ing, we are able to efficiently solve a wide range of flow-speed problems, from extremely low-speed flow (i.e. M � 10�4) in
the nearly incompressible limit to the choked flow conditions (i.e. M � 1). In the next section, we discuss the detailed
description of our spatiotemporal discretization, followed by the physics-based preconditioner.

3. Spatiotemporal discretization and Rhie–Chow interpolation

Discretizing Eq. (1) in two dimensions using finite volume method with the BE1 time integration, results in
qnþ1
i;j � qn

i;j

Dt
þ
cqunþ1

iþ1=2;j � cqunþ1
i�1=2;j

Dx
þ
cqv nþ1

i;jþ1=2 � cqv nþ1
i;j�1=2

Dy
¼ 0; ð18Þ

qunþ1
i;j � qun

i;j

Dt
þ
ð dqu2 þ P � sxxÞnþ1

iþ1=2;j � ð dqu2 þ P � sxxÞnþ1
i�1=2;j

Dx
þ
ðdquv � sxyÞnþ1

i;jþ1=2 � ðdquv � sxyÞnþ1
i;j�1=2

Dy
¼ 0; ð19Þ

qvnþ1
i;j � qvn

i;j

Dt
þ
ðdquv � syxÞnþ1

iþ1=2;j � ðdquv � syxÞnþ1
i�1=2;j

Dx
þ
ð dqv2 þ P � syyÞnþ1

i;jþ1=2 � ð dqv2 þ P � syyÞnþ1
i;j�1=2

Dy
� qnþ1

i;j g ¼ 0; ð20Þ

Enþ1
i;j � En

i;j

Dt
þ

duðEþ PÞ
h inþ1

iþ1=2;j
� duðEþ PÞ
h inþ1

i�1=2;j

Dx
þ

dvðEþ PÞ
h inþ1

i;jþ1=2
� dvðEþ PÞ
h inþ1

i;j�1=2

Dy

�
usxx þ vsxy þ qx

� �nþ1
iþ1=2;j � usxx þ vsxy þ qx

� �nþ1
i�1=2;j

Dx
�

usyx þ vsyy þ qy

� �nþ1
i;jþ1=2

� usyx þ vsyy þ qy

� �nþ1
i;j�1=2

Dy

� qvnþ1
i;j g ¼ 0; ð21Þ
where subscripts i; j are the spatial mesh indices and n and nþ 1 are the current and new times, respectively. Dependent
variables are located at cell centers (i.e. subscripts i; j). However, the finite volume method requires face centered numerical
fluxes, denoted by a hat ‘‘^”. In Eqs. (18)–(21), we have assumed that the gravity vector is aligned with the y-axis. To solve
this system, the numerical fluxes at cell edges must be defined. Viscous and thermal diffusion operators are discretized by
the second-order central differencing. For the advection operator, we employ Rhie–Chow based interpolation [27,31], dis-
cussed next.

3.1. Rhie–Chow based interpolation for the advection operator

As mentioned previously, our preconditioner approximately solves a series of parabolic (or elliptic) scalar linear systems
using a fixed number of multigrid V-cycles. Compactness of the discretization for numerical fluxes is important for multigrid
efficiency. Hence, our goal is to introduce a discretization scheme that results in the compact pressure stencils under the
transformation of the original discretization to the primitive variables. In this section, we present a discretization of the
advection operator using the following Euler equations (i.e. subset of Eq. (1))
@U
@t
þ @FðUÞ

@x
þ @GðUÞ

@y
¼ 0; ð22Þ
where
FðUÞ ¼

qu

qu2 þ P

quv
uðEþ PÞ

8>>><>>>:
9>>>=>>>;; GðUÞ ¼

qv
quv

qv2 þ P

vðEþ PÞ

8>>><>>>:
9>>>=>>>;
are the advection operators. By integrating over the control volume, we obtain the following discretized equations
qnþ1
i;j � qn

i;j

Dt
þ
cqunþ1

iþ1=2;j � cqunþ1
i�1=2;j

Dx
þ
cqv nþ1

i;jþ1=2 � cqv nþ1
i;j�1=2

Dy
¼ 0; ð23Þ

qunþ1
i;j � qun

i;j

Dt
þ

dðqu2 þ PÞnþ1
iþ1=2;j � dðqu2 þ PÞnþ1

i�1=2;j

Dx
þ
dquv nþ1

i;jþ1=2 � dquv nþ1
i;j�1=2

Dy
¼ 0; ð24Þ
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qvnþ1
i;j � qvn

i;j

Dt
þ
dquv nþ1

iþ1=2;j � dquv nþ1
i�1=2;j

Dx
þ
ð dqv2 þ PÞnþ1

i;jþ1=2 � ð dqv2 þ PÞnþ1
i;j�1=2

Dy
¼ 0; ð25Þ

Enþ1
i;j � En

i;j

Dt
þ

duðEþ PÞnþ1
iþ1=2;j � duðEþ PÞnþ1

i�1=2;j

Dx
þ

dvðEþ PÞnþ1
i;jþ1=2 � dvðEþ PÞnþ1

i;j�1=2

Dy
¼ 0: ð26Þ
In order to apply the Rhie–Chow interpolation, we first rewrite Eqs. (23)–(26) as
qnþ1
i;j � qn

i;j

Dt
þ

~unþ1
iþ1=2;jq

nþ1
iþ1=2;j � ~unþ1

i�1=2;jq
nþ1
i�1=2;j

Dx
þ

~vnþ1
i;jþ1=2q

nþ1
i;jþ1=2 � ~vnþ1

i;j�1=2q
nþ1
i;j�1=2

Dy
¼ 0; ð27Þ

qunþ1
i;j � qun

i;j

Dt
þ

~unþ1
iþ1=2;jqunþ1

iþ1=2;j þ Pnþ1
iþ1=2;j � ~unþ1

i�1=2;jqunþ1
i�1=2;j � Pnþ1

i�1=2;j

Dx
þ

~vnþ1
i;jþ1=2qunþ1

i;jþ1=2 � ~vnþ1
i;j�1=2qunþ1

i;j�1=2

Dy
¼ 0; ð28Þ

qvnþ1
i;j � qvn

i;j

Dt
þ

~unþ1
iþ1=2;jqvnþ1

iþ1=2;j � ~unþ1
i�1=2;jqvnþ1

i�1=2;j

Dx
þ

~vnþ1
i;jþ1=2qvnþ1

i;jþ1=2 þ Pnþ1
i;jþ1=2 � ~vnþ1

i;j�1=2qvnþ1
i;j�1=2 � Pnþ1

i;j�1=2

Dy
¼ 0; ð29Þ

Enþ1
i;j � En

i;j

Dt
þ

~unþ1
iþ1=2;jðEþ PÞnþ1

iþ1=2;j � ~unþ1
i�1=2;jðEþ PÞnþ1

i�1=2;j

Dx
þ

~vnþ1
i;jþ1=2ðEþ PÞnþ1

i;jþ1=2 � ~vnþ1
i;j�1=2ðEþ PÞnþ1

i;j�1=2

Dy
¼ 0; ð30Þ
where ~ui	1=2;j and ~v i;j	1=2 denote the x- and y-components of the Rhie–Chow fluxing velocities. These velocities are defined by
discretizing the momentum (the Navier–Stokes) equations at cell edges in the following manner
~unþ1
i	1=2;j ¼ ~un

i	1=2;j 

Dt

qnþ1
i	1=2;j

Pnþ1
i	1;j � Pnþ1

i;j

Dx

 Dt

qnþ1
i	1=2;j

Hnþ1
i	1;j þ Hnþ1

i;j

2
; ð31Þ
where H is the operator which includes the convective flux, viscous stress, and body force terms. Eq. (31) resembles an aver-
age of the two momentum equations at i; i	 1; however, the averaging of two pressure gradients is replaced by the compact
pressure gradient. This equation is equivalent to averaging the cell centered momentum equation to within a second-order
truncation error. Moreover, in order to make the fluxing velocity more consistent with the original momentum equations, we
define the time level n velocity as
~un
i	1=2;j ¼

1
2

qun
i;j

qn
i;j

þ
qun

i	1;j

qn
i	1;j

 !
: ð32Þ
In our approach, the advected quantities and other cell edge quantities in Eqs. (27)–(30) are computed by the second- or
third-order upwinding (i.e. QUICK or PPM [18,35]) and advected by the Rhie–Chow fluxing velocities. Using this discretiza-
tion, our resulting elliptic pressure equation has a compact stencil.
4. Physics-based preconditioner for Navier–Stokes equations

4.1. Primitive-variable based physics-based preconditioner

Having discussed the spatiotemporal discretization, we now present our PBP in a primitive-variable form. This precondi-
tioner allows us to isolate the implicit treatment of acoustic waves by a single variable, the pressure P. The original Jacobian
matrix1 can be written in the following block form
J ¼

Jq;q Jq;qu Jq;qv Jq;E

Jqu;q Jqu;qu Jqu;qv Jqu;E

Jqv;q Jqv;qu Jqv;qv Jqv;E

JE;q JE;qu JE;qv JE;E

0BBB@
1CCCA: ð33Þ
Each block element of Eq. (33) represents a coupling of conservative variables. In low to intermediate Mach number flows
with high-heat flux, we are interested in the ability to step over three distinct time scales: (a) stiff acoustic waves in low-
speed regions, (b) viscous diffusion, and (c) heat conduction in finely gridded boundary layers. The goal of our algorithm
is to develop an implicit second-order in time method which will closely follow advection time scales, but not be stability
limited by the advection CFL.

The goal of the preconditioning step is to solve the potentially stiff physics implicitly and efficiently by extracting the con-
tribution of these three physics from the original set of equations. First, we transform Eq. (33) using the similarity transfor-
mation (16) to get the primitive-variable system (17). The resulting primitive-variable Jacobian matrix eJ has the following
form
ich is never explicitly formed in the code.
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eJ ¼
JP;P JP;u JP;v JP;e

Ju;P Ju;u Ju;v Ju;e

Jv;P Jv ;u Jv;v Jv;e

Je;P Je;u Je;v Je;e

0BBB@
1CCCA: ð34Þ
A and A�1 are the transformation matrices of the form
A ¼

@q
@P

@q
@u

@q
@v

@q
@e

@qu
@P

@qu
@u

@qu
@v

@qu
@e

@qv
@P

@qv
@u

@qv
@v

@qv
@e

@E
@P

@E
@u

@E
@v

@E
@e

0BBBB@
1CCCCA; ð35Þ

A�1 ¼

@P
@q

@P
@qu

@P
@qv

@P
@E

@u
@q

@u
@qu

@u
@qv

@u
@E

@v
@q

@v
@qu

@v
@qv

@v
@E

@e
@q

@e
@qu

@e
@qv

@e
@E

0BBBBB@

1CCCCCA: ð36Þ
For preconditioning, we simplify the transformed Jacobian matrix (Eq. (34)) by ignoring (i.e. linearizing at kth Newton step):
(a) advection, (b) compressible work, and (c) viscous heating. With these simplifications, Picard linearization, and operator
splitting (with some reordering), the preconditioning matrix becomes
M ¼

Ae;e 0 0 0
AP;e AP;P 0 0

0 Au;P Au;u 0
0 Av;P 0 Av;v

0BBB@
1CCCA: ð37Þ
The preconditioning process approximately solves
MdV ¼ �gResðVÞ: ð38Þ
To approximately invert the preconditioning matrix, we employ operator splitting. Because the preconditioning matrix is
block lower triangular, Eq. (38) can be solved in the following steps:
ð1Þ Ae;ede ¼ �gRese;

ð2Þ AP;PdP ¼ �gResP �AP;ede;

ð3Þ Au;udu ¼ �gResu �Au;PdP;

ð4Þ Av ;vdv ¼ �gResv �Av;PdP:

ð39Þ
Each scalar parabolic or elliptic system is approximately inverted with a fixed number of multigrid V-cycles. Next, we pro-
vide the explicit form of the discrete operator M and compare with the PDEs.

(Step 1) Transformation to the primitive variables:
The first step is to transform the residual RHS vector in the primitive-variable form as follows
gResðVÞ ¼ A�1ResðUÞ: ð40Þ

Note that since this is a local transformation, and A�1 has an explicit form (Eq. (36)), this operation is computation-
ally inexpensive.
(Step 2) Heat conduction Ae;ede ¼ �gRese:
Once the RHS is transformed, we precondition the internal energy equation targeting heat conduction. To obtain a
simplified internal energy equation for preconditioning, we acknowledge that in our target flow regime (1) the time
scale of advection is much slower than that of heat conduction, (2) viscous heating is insignificant, and (3) time rate
of change in kinetic energy is small compared to internal energy. Then, the advection term r � ðuðEþ PÞÞ and the
viscous heating term r � ðs �~uÞ can be ignored. The corresponding PDE which defines Ae;e step may be written as
@e
@t
� 1

q
r � j

cv
re

	 

¼ 0; ð41Þ

and the discrete equation as

enþ1
i;j � en

i;j

Dt
� j

cvqnþ1
i;j

enþ1
iþ1;j � 2enþ1

i;j þ enþ1
i�1;j

Dx2 þ
enþ1

i;jþ1 � 2enþ1
i;j þ enþ1

i;j�1

Dy2

 !
¼ 0: ð42Þ
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Note that Eq. (42) is decoupled from other primitive variables, leading to the first row of Eq. (37). The outer Newton
iteration is solving for a delta (or an update) and thus we cast our preconditioning step in the same ‘‘delta” form

dei;j

Dt
� j

cvqk
i;j

deiþ1;j � 2dei;j þ dei�1;j

Dx2 þ dei;jþ1 � 2dei;j þ dei;j�1

Dy2

	 

¼ �gRese; ð43Þ

or

Ae;ede ¼ �gRese; ð44Þ

where de ¼ ekþ1 � ek. For example, the local matrix component for the internal energy equation then becomes

Ai;j
e;e ¼

@fRes i;j
e

@ei�1;jþ1

@fRes i;j
e

@ei;jþ1

@fRes i;j
e

@eiþ1;jþ1

@fRes i;j
e

@ei�1;j

@fRes i;j
e

@ei;j

@fRes i;j
e

@eiþ1;j

@fRes i;j
e

@ei�1;j�1

@fRes i;j
e

@ei;j�1

@fRes i;j
e

@eiþ1;j�1

26666664

37777775 ¼
j

cvqk
i;j

0 � 1
Dy2 0

� 1
Dx2

cvqk
i;j

jDt þ 2
Dx2 þ 2

Dy2

	 

� 1

Dx2

0 � 1
Dy2 0

266664
377775: ð45Þ

Note that density is linearized at the current kth Newton step.

(Step 3) Pressure waves AP;PdP ¼ �gResP �AP;ede:

The next step is preconditioning of the stiff acoustic waves. To accomplish this, we will approximately invert a
pressure Poisson equation. In order to produce the pressure Poisson equation, traditional pressure-based semi-
implicit schemes employ the substitution of the momentum equation (Eqs. (24) and (25)), ignoring advection, vis-
cosity and gravity, into the continuity equations (Eq. (23)). This simplification allows one to decouple the pressure
Poisson equation from the velocity equations, leading to the second row of Eq. (37). Then, the linearized equation
of state is utilized to transform density into pressure [13,21]. However, if rP and r � q~u are both evaluated with
standard second-order central difference formulas, the resulting pressure Poisson equation will have non-compact
stencils. Non-compact stencils can lead to a degraded performance of the multigrid based preconditioner. As dis-
cussed in Section 3.1, we employ Rhie–Chow discretization instead. Substitution of Eq. (31) into Eq. (27), together
with Rhie–Chow based interpolation, results in the following:
qnþ1
i;j � qn

i;j

Dt
þ

~un
iþ1

2;j
qnþ1

iþ1
2;j
� ~un

i�1
2;j
qnþ1

i�1
2;j

Dx
� Dt

Hnþ1
iþ1;j � Hnþ1

i�1;j

2Dx
þ

~vn
i;jþ1

2
qnþ1

i;jþ1
2
� ~vn

i;j�1
2
qnþ1

i;j�1
2

Dy

� Dt
H

nþ1�Hnþ1
i;j�1

i;jþ1

2Dy
� Dt

Pnþ1
iþ1;j � 2Pnþ1

i;j þ Pnþ1
i�1;j

ðDxÞ2
� Dt

Pnþ1
i;jþ1 � 2Pnþ1

i;j þ Pnþ1
i;j�1

ðDyÞ2
¼ 0: ð46Þ

Note that we have assumed the fluxing density in Eq. (27) is equal to the face centered density in Eq. (31). We can
utilize the linearized equation of state,

dP ¼ @P
@q

����
e

dqþ @P
@e

����
q
de; ð47Þ

to obtain the ‘‘delta” form

@P
@q

	 
�1 dPi;j

Dt
� dPiþ1;j � 2dPi;j þ dPi�1;j

Dx2 Dt � dPi;jþ1 � 2dPi;j þ dPi;j�1

Dy2 Dt ¼ �gResP þ
@P
@q

	 
�1
@P
@e

	 

de ð48Þ

or

AP;PdP ¼ �gResP �AP;ede: ð49Þ

Importantly, the above discretized pressure Poisson equation has a compact stencil and is consistent with the ori-
ginal discretization of the nonlinear functions being solved by JFNK.
(Step 4) Viscosity:
The last step is preconditioning of the viscosity effects. For this, we approximately invert a simplified viscous oper-
ator to avoid the need for system multigrid. Applying system multigrid to the approximate inversion of the coupled
momentum equations is an option we do not consider here. Under incompressible, constant viscosity limit, and
ignoring advection, we can decouple the momentum equation as follows:
@u
@t
� l

q
r2u ¼ � 1

q
@P
@x
; ð50Þ

@v
@t
� l

q
r2v ¼ � 1

q
@P
@y
: ð51Þ

Because the viscous operator is discretized by second-order central differencing, similar to the heat conduction
with the Newton linearization of advection operator, we can readily create a consistent compact discretization
of the viscous equation as
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unþ1
i;j � un

i;j

Dt
� l

qnþ1
i;j

unþ1
iþ1;j � 2unþ1

i;j þ unþ1
i�1;j

Dx
þ

unþ1
i;j�1 � 2unþ1

i;j þ unþ1
i;j�1

Dy

 !
¼ � 1

q
@P
@x
; ð52Þ

vnþ1
i;j � vn

i;j

Dt
� l

qnþ1
i;j

vnþ1
iþ1;j � 2vnþ1

i;j þ vnþ1
i�1;j

Dx
þ

vnþ1
i;jþ1 � 2vnþ1

i;j þ vnþ1
i;j�1

Dy

 !
¼ � 1

q
@P
@y
: ð53Þ

Corresponding ‘‘delta” forms, accounting for the pressure update, are

dui;j

Dt
� l

qk
i;j

duiþ1;j � 2dui;j þ dui�1;j

Dx
þ dv i;jþ1 � 2dui;j þ dui;j�1

Dy

	 

¼ �gResu �

1
q
@dP
@x

; ð54Þ

or

Au;udu ¼ �gResu �Au;pdP; ð55Þ
dv i;j

Dt
� l

qk
i;j

dv iþ1;j � 2dv i;j þ dv i�1;j

Dx
þ dv i;jþ1 � 2dv i;j þ dv i;j�1

Dy

	 

¼ �gResv �

1
q
@dP
@y

ð56Þ

or

Av;vdv ¼ �gResv �Av;pdP: ð57Þ

Steps 2–4 require the approximate inversion of four parabolic systems. We would like to emphasize that these stan-
dard five-point Laplacian matrices are the only matrices formed. To approximately solve these elliptic/parabolic
systems, we use five V-cycles of standard geometric MG with the line smoothing. Of course the extension to 3D
and unstructured grids will require five parabolic systems and more sophisticated multilevel methods.
(Step 5) Transformation back to the conservative variables:
The last step is to transform the Newton correction term back to the conservative variables. We use similarity
matrix to perform the following transformation
dU ¼ AdV: ð58Þ

To summarize, we are simply using semi-implicit + operator splitting strategy to precondition JFNK.
5. Numerical examples

In this section, we demonstrate efficiency of the JFNK–PBP framework. We solve several different test problems, varying
from a slow incompressible natural circulation ðM � 10�4Þ to a fast transient ðM � 1Þ in order to test wide range of applica-
bility of our PBP.

5.1. Thermally driven square cavity problem

As the first example, we solve the thermally driven square cavity problem [7,8,12,24]. The problem consists of the unit
square cavity with insulated horizontal walls and heated/cooled vertical walls. The flow in this problem is driven by the
buoyancy forces created by the variation in density due to temperature difference. This problem can be categorized by
the Prandtl ðPrÞ and Rayleigh ðRaÞ numbers and the non-dimensional temperature difference
� ¼ Th � Tc

Th þ Tc
: ð59Þ
In this section, we solve two distinct cases, where the three parameters ðPr;Ra; �Þ are ð0:71;104;0:01Þand ð0:71;106;0:6Þ,
respectively. The first problem, with low Ra and �, is one of a group of well-known benchmark problems given in [7,8],
and can be modeled appropriately by incompressible + Boussinesq approximations. However, the large disparity between
the acoustic mode and dynamical mode introduces stiffness and difficulty solving with compressible flow models. Therefore,
it serves as a very challenging test problem for our algorithm.

On the other hand, the high-temperature difference case introduces significant density variations. Therefore, incompress-
ible + Boussinesq approximations fail to reproduce the benchmark solution given in [12,24]. We demonstrate the developed
JFNK–PBP framework can solve both cases accurately and efficiently.

5.1.1. Pseudo-transient case
First, we show the result of a steady state problem solved via pseudo-transient continuation. Under relatively low Ray-

leigh numbers, the problem has a unique steady state solution. The steady state streamline velocity and temperature distri-
butions are depicted in Fig. 1(a). The maximum Mach number of the problem is found to be � 2� 10�4. The local Nusselt
number distribution along the vertical walls are shown in Fig. 1(b). Both the maximum and minimum Nusselt numbers along
the vertical walls match within 0.2% of the benchmark solution given in [7]. We have used the Backward Euler method for



Fig. 1. Flow field and Nusselt number distribution.

9140 H. Park et al. / Journal of Computational Physics 228 (2009) 9131–9146
the temporal integration. The switched evolution relaxation (SER) [23] is employed as the dynamical time step control. The
SER adjusts the time step size by the magnitude of the nonlinear residual norm
Table 1
Efficien

Grid

64 �
128
256
64 �

a Ave
b Ave
c Wit
Dtn ¼ Dt0 kResðU0Þk1
kResðUn�1Þk1

: ð60Þ
Table 1 compares the performance of the JFNK–PBP with different mesh sizes. The 5th and 6th columns displays the average
of the maximum acoustic and material CFL at each time steps, defined as
CFLa ¼
ðjuj þ cÞDt

h

���� �������� ����
1
; ð61Þ

CFLm ¼
jujDt

h

���� �������� ����
1
; ð62Þ
where u; c, and h are the local velocity of fluid, the local sound speed, and mesh length, respectively. CFLa is the measure of
how much fraction the time step exceeds the explicit stability limit, and CFLm is the measure of how closely the dynamical
time scale is followed. The number of Newton iterations per time step as well as those of Krylov iterations per Newton step
stay relatively constant. The last row of Table 1 shows the performance of our preconditioner with a fixed acoustic CFL.
Although the GMRES and Newton iterations converges much faster for the fixed (and small) CFL case, the total number of
Krylov iterations are smaller when advective time scale is followed, which reflects in the overall CPU time.

5.1.2. Temporal convergence test
Next, we demonstrate the accuracy of the temporal discretization. In this regard, we consider a transient problem, by set-

ting time-dependent temperature boundary condition at the hot wall as
ThðtÞ ¼ Th0 þ at; ð63Þ
cy of the operator-split preconditioner in pseudo-transient problem.

size Total time steps Average GMRES
Newton Average Newton

time step
Average CFLa

a Average CFLm
b Normalized CPU time

64 290 20.3 1.68 3093 0.62 1
� 128 509 16.9 1.47 4253 0.86 3.62
� 256 965 14.8 1.34 4456 0.90 27.3
64c 133,333 2.5 1.0 80 0.016 6.64

rage of maximum acoustic CFL.
rage of maximum material CFL.
h the fixed acoustic CFL.
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where a ¼ ð1þ�Þ
105 in the non-dimensionalized form. The initial condition of the problem was set to be the steady state solution

with Th0 (Fig. 1(a)). Fig. 2 shows time step convergence for the 1st (BE1) and the 2nd (BDF2) order time integration schemes.
The simulation was run for 800 dimensionless time. The reference solution was computed using the BDF2 time integration
with Dt ¼ 0:2. As can be seen from the figure, both BE1 and BDF2 exhibit nearly theoretical convergence rate. However, BDF2
can obtain as much as two orders of magnitude more accurate result with the same time step size (i.e. Dt ¼ 40 in Fig. 2).
Table 2 compares the efficiency between BE1 and BDF2. It is clear that BDF2 is more efficient than BE1 to obtain a similar
accuracy. The material CFL number varies between 0.07 and 0.75 for Dt ¼ 10, while it varies between 0.7 and 7.5 for
Dt ¼ 100. Because the PBP is most efficient at material CFL � 1, the number of Krylov iterations is somewhat larger for
BDF2 case. This is the reason for the computational time not being scaled with the number of time steps.
5.1.3. Transient case
In order to perform another estimate of the preconditioner performance, we consider a second transient problem, by set-

ting time-dependent temperature boundary conditions at the hot wall as
Fig

Table 2
Efficien

BE1

BDF2
ThðtÞ ¼ T0 þ DT cos½0:4pt�; ð64Þ
where T0 ¼ 1 and Dt ¼ �. The simulation was run for 5.0 s (i.e. 2075 dimensionless time). The transient problem was solved
by BDF2. We compare the number of iterations (both Newton and GMRES) under variation of two parameters: mesh size
(64 � 64, 128 � 128, and 256 � 256) and CFL numbers (250, 1000, and 4000). Dynamics of the transient problem are shown
in Fig. 3. Table 3 lists the number of iterations used to solve this transient problem under fixed CFL numbers. From this table,
the effectiveness of the developed preconditioner is apparent. It is also seen to be independent of the mesh size and only
weakly dependent on the CFL number.
5.1.4. High-temperature difference case
The non-dimensional temperature difference in this example is 0.6, and the Rayleigh number is 106. Due to the large tem-

perature difference, the Boussinesq approximation cannot adequately model the buoyancy forces (Fig. 4(b)); therefore, the
incompressible models fail to obtain an accurate solution although flow is still relatively slow ðM � 10�3Þ. The purpose of
this example is to demonstrate the performance of our algorithm in these high-heat flux conditions.

We solve this problem as a pseudo-transient problem. Fig. 4(a) depicts the steady state temperature distribution and
velocity stream lines. The asymmetry in the flow can be observed. The density varies by a factor of four between the hot
and cold walls, which leads to � 15% difference in the maximum Nusselt number [12,24]. This asymmetric solution cannot
. 2. Error vs. time step size for thermally driven square cavity problem. Reference solution was computed using normalized time step size 1.

cy comparison between BE1 and BDF2.

Dt Error Normalized CPU time

10 5:9� 10�2 2.7

100 4:6� 10�2 1.0



Fig. 3. Temperature distributions of the thermally driven cavity flow transient problem for time.

Table 3
Efficiency of the operator-split preconditioner in transient problem. Dynamics of the temperature field are depicted in Fig. 3.

Grid size CFLa � 250 CFLa � 1000 CFLa � 4000

#Krylov
Newton

#Newton
time step

#Krylov
Newton

#Newton
time step

#Krylov
Newton

#Newton
time step

64 � 64 5.5 1.0 7.3 2.0 14.8 3.2
128 � 128 5.0 1.0 7.1 1.9 12.6 3.3
256 � 256 4.1 1.0 7.2 1.9 11.7 3.4
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be obtained by the incompressible Boussinesq approximation flow models. Our result generally matches well with a refer-
ence result (<1% error in the maximum Nusselt number with 256 � 256 grid) given in [12].

Table 4 summarizes the algorithm efficiency in this example. By closely following the material CFL (i.e. CFLm), the average
number of GMRES iterations per Newton step and Newton steps per time step are almost independent of mesh sizes. The
performance of PBP are similar to the previous case (Table 1). However, the CFLa number used is smaller. This is due to
the time stepping algorithm following the advective time scales. Since we have ignored the advection terms in our precon-
ditioner, it is expected to perform best near the material CFL � 1.



Fig. 4. Temperature, streamlines and density for the thermally driven square cavity problem with � ¼ 0:6 and Ra ¼ 106.

Table 4
Efficiency of PBP in high-temperature difference case.

Grid size Total time steps Average GMRES
Newton Average Newton

time step
Average CFLa Average CFLm Normalized CPU time

64 � 64 1561 11.9 2.13 518.4 0.883 1
128 � 128 2880 13.9 2.26 569.2 0.943 7.98
256 � 256 5755 10.6 1.90 562.3 0.939 47.73

Fig. 5. Mach number and streamline plot for the 2D blowdown problem.
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5.2. 2D blowdown example

One of the important HTGR accident scenarios is the loss of forced cooling accident with depressurization (DLOFC) due to
breakage of pipes [30]. In this accident scenario, the choked flow is likely to be developed due to large pressure difference
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between the core and atmospheric pressure (e.g. 90:1 pressure ratio in a typical HTGR design). There are two distinct time
scales in the DLOFC accident: fast initial blowdown and slow air ingress.

In this example, the initial blowdown of the DLOFC is simulated by a simple and reduced scale two-dimensional depres-
surization model. Two large tanks (4 m � 4 m left and 12 m � 4 m right) with a pressure ratio of 2:1 are connected by a pipe
(4 m � 1.2 m). At t = 0, the pipe breaks and starts the transient. Due to the large size of the tank, the flow speed varies from
0 < M < 1. Fig. 5(a) and(b) depict the Mach number distribution and stream line velocity at time 0.015 and 0.075 s, respec-
tively, while Fig. 6(a)–(d) show the pressure at y = 2.0. It can be seen from Fig. 6(c) that the pressure inside the left tank be-
comes lower than atmospheric pressure. This results in the reverse in flow direction, which is observed by comparing
Fig. 5(a) and (b). Because this example is a reduced scale model, the physics of the problem may not reflect that of the true
scale problem. To model a real nuclear reactor, a more detailed model needs to be analyzed. To perform the detailed analysis,
a proper shock capturing scheme and unstructured grid capability are required. However, this problem requires the capabil-
Fig. 6. Pressure at y ¼ 2:0; time (a) t = 0.0 s, (b) t = 0.03 s, (c) t = 0.06 s, and (d) t = 0.09 s.

Table 5
Efficiency of PBP in 2D blowdown example with various mesh sizes (pressure ratio 2:1).

Grid size Average GMRES
Newton Average Newton

time step
Average CFLa Average CFLm Normalized CPU time

100 � 20 6.7 9.7 2.4 0.69 1
200 � 40 6.9 4.0 2.5 0.79 3.0
400 � 80 7.6 4.8 2.6 0.89 30.0

Table 6
Efficiency of PBP in 2D blowdown example with various pressure ratio (grid size 200 � 40).

Pressure ratio Average GMRES
Newton Average Newton

time step
Mmax Average CFLa Average CFLm Normalized CPU time

2:1 6.9 4.0 0.59 2.5 0.79 1
5:1 7.2 4.7 1.48 1.7 0.84 2.4
10:1 9.0 5.4 2.13 1.9 1.05 3.3
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ity of modeling fast transient which is in the order of acoustic modes. Thus, it serves as a challenging problem for low-Mach
flow algorithms.

Table 5 compares the efficiency of our preconditioner with various mesh sizes. The pressure ratio 2:1 produces the max-
imum Mach number of approximately 0.6. The average number of GMRES iterations is again almost independent of mesh
sizes while we closely follow the advective time scale of the problem. Table 6 compares the preconditioner performance with
various pressure ratio. The choked flow occurs in the cases with pressure ratios of 5:1 and 10:1. Even with these cases, the
number of GMRES iterations stays relatively small when the advective time scale is followed. The ability to solve a wide
range of flow speeds without any modification in the algorithm is desirable to analyze the transient phenomena which in-
volves stages with both fast dynamics and slow transients.
6. Conclusion

In this paper, we have developed an efficient implicit solution algorithm for low to intermediate Mach number flows.
Although the computational effort per time step can be relatively large, an implicit time integration of the problem allows
one to step over the fast time scales without stability consideration, which ultimately leads to an overall high level of effi-
ciency. The expensive Jacobian formation required by the Newton method was avoided by the Jacobian-free formulation, and
the numerical stiffness due to the disparity of the fast and slow time scales are remedied by employing a physics-based pre-
conditioner of the Krylov method. Our physics-based preconditioner resembles traditional semi-implicit or physics-based
splitting algorithms in order to obtain an approximate solution of the distinct physical phenomena efficiently. The precon-
ditioner first performs a consistent transformation of the original conservative-variable form to the primitive-variable form,
and then targets the distinct physics (i.e. heat conduction, stiff acoustic waves and viscosity) separately.

The efficiency of the algorithm is further amplified by employment of the Rhie–Chow based interpolation for the advec-
tion operators. As a result of the interpolation, a pressure Poisson equation with a compact stencil is formed, while maintain-
ing a consistent discretization with the original equations. The resulting scalar parabolic systems are approximately inverted
by a fixed number of the multigrid V-cycles in an efficient manner.

Numerical examples have demonstrated the efficiency and accuracy of the developed algorithm for a wide range of flow
conditions. The behavior of the algorithm is almost independent of the mesh sizes and weakly depend on acoustic CFL num-
bers when the time step size does not exceed advection time scale. An extension of this work to three-dimensional unstruc-
tured mesh problems within parallel computational framework is an ongoing effort.
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